Creating (or not creating) a Portable Test

Software Engineering and Reuse in Modeling, Simulation, and Data Analytics for Science and Engineering, SC22 Kevin Gott NERSC November 16, 2022 I'd like to tell you a story:

"Challenges of porting to diverse architectures"

A few weeks ago, I was making a CUDA Aware MPI Test.

Simple test: should we use Cuda Aware MPI or not.

For the application, this test is just two input flags:

Want a portable test (not too much to ask, right?)

- Decide on a default: on or off?
- At least Perlmutter & Frontier.

- Give to other users.

But, building a portable run script isn't so easy.

There's a known issue with Slurm + CUDA Aware MPI dealing with GPU binding:

So, don't use these:	Unless you use this:	Instead, do this:
gpus-per-task = gpus-per-socket = gpu-bind = <stuff> pus-per-gpu = ntasks-per-gpu =</stuff>	 → Just turns off bad ones. → Still need to hand-set binding. → And users play with this flag. 	ntasks-per-node=4 gpus-per-node=4 Not excusive, some systems alter hat. And then, set CUDA_VISIBLE_DEVICES for binding.
NERSC	4 B	BERKELEY LAB Science Solutions to the World

So, now you have to hand-tune affinity.

		Hel Hel Hel Hel	lo from lo from lo from lo from	rank 0 rank 1 rank 2 rank 3	, on nid001277. , on nid001277. , on nid001277. , on nid001277.	(core affinit (core affinit (core affinit (core affinit	y = 0-1 y = 16- y = 32- y = 48-	5,64-79) 31,80-95) 47,96-111) 63,112-127)	[
1						Confirm ma	ippings	3 for rank 3 Rank 2 out o 0 for rank 2 1 for rank 2 2 for rank 2 3 for rank 2	: 0000:C1:00.0 f 4 processes: : 0000:03:00.0 : 0000:41:00.0 : 0000:82:00.0 : 0000:C1:00.0	I see 4	4 GPU(s).
GPU0 GPU1 GPU2 GPU3	GPU0 X NV4 NV4 NV4	<u>GPU1</u> NV4 X NV4 NV4	<u>GPU2</u> NV4 NV4 X NV4	<u>GPU3</u> NV4 NV4 NV4 X	<u>CPU Affinity</u> 48-63,112-127 32-47,96-111 16-31,80-95 0-15,64-79	NUMA Affinity 3 2 1 0		1 for rank 1 2 for rank 1 3 for rank 1 Rank 3 out o 0 for rank 3 1 for rank 3 2 for rank 3	: 0000:41:00.0 : 0000:82:00.0 : 0000:C1:00.0 f 4 processes: : 0000:03:00.0 : 0000:41:00.0 : 0000:82:00.0	I see 4	4 GPU(s).
					Source of "truth	11		Rank 0 out o 0 for rank 0 1 for rank 0 2 for rank 0 3 for rank 0 Rank 1 out o 0 for rank 1	<pre>f 4 processes: 0000:03:00.0 0000:41:00.0 0000:82:00.0 0000:C1:00.0 f 4 processes: 0000:03:00.0</pre>	I see 4	4 GPU(s). 4 GPU(s).

Office of

Science

After a few hours:

Science

Of course... intermission for a meeting:

During which I look up the "deadline" flag in the sbatch man page:

--deadline=<OPT>

NERSO

remove the job if no ending is possible before this deadline (start > (deadline -

time[-min])). Default is no deadline. Valid time formats are:

NERGY Office of Science

Then, the meeting goes on...

I get distracted....

And I glance up the page....

Hey, isn't that the version of Slurm that we're upgrading to in 36 hours?

NOTE: Beginning with 22.05, srun will not inherit the --cpus-per-task value requested by salloc or sbatch. It must be requested again with the call to srun or set with the SRUN_CPUS_PER_TASK environment variable if desired for the task(s).

--deadline=<OPT>

remove the job if no ending is possible before this deadline (start > (deadline -

time[-min])). Default is no deadline. Valid time formats are:

And.....

Well...that's an

important flag

-c, --cpus-per-task=<ncpus>

Advise the Slurm controller that ensuing job steps will require *ncpus* number of processors per task. Without this option, the controller will just try to allocate one processor per task.

For instance, consider an application that has 4 tasks, each requiring 3 processors. If our cluster is comprised of quad-processors nodes and we simply ask for 12 processors, the controller might give us only 3 nodes. However, by using the --cpus-per-task=3 options, the controller knows that each task requires 3 processors on the same node, and the controller will grant an allocation of 4 nodes, one for each of the 4 tasks.

NOTE: Beginning with 22.05, srun will not inherit the --cpus-per-task value requested by salloc or sbatch. It must be requested again with the call to srun or set with the SRUN_CPUS_PER_TASK environment variable if desired for the task(s).

--deadline=<OPT>

LILLANALCOCT LANALDNA

remove the job if no ending is possible before this deadline (start > (deadline - time[-min])). Default is no deadline. Valid time formats are:

And then...

Advise the Slurm controller that ensuing job steps will require *ncpus* number of processors per task. Without this option, the controller will just try to allocate one processor per task.

For instance, consider an application that has 4 tasks, each requiring 3

Well...that's an important flag

processors. If our cluster is comprised of quad-processors nodes and we simply ask for 12 processors, the controller might give us only 3 nodes. However, by using the --cpus-per-task=3 options, the controller knows that each task requires 3 processors on the same node, and the controller will grant an allocation of 4 nodes, one for each of the 4 tasks.

... that's heavily
changing
behavior?!?!

NOTE: Beginning with 22.05, srun will not inherit the --cpus-per-task value requested by salloc or sbatch. It must be requested again with the call to srun or set with the SRUN_CPUS_PER_TASK environment variable if desired for the task(s).

--deadline=<OPT>

remove the job if no ending is possible before this deadline (start > (deadline - time[-min])). Default is no deadline. Valid time formats are:

And then I...

NOTE: Beginning with 22.05, srun will not inherit the --cpus-per-task value requested by salloc or sbatch. It must be requested again with the call to srun or set with the SRUN_CPUS_PER_TASK environment variable if desired for the task(s).

--deadline=<OPT>

remove the job if no ending is possible before this deadline (start > (deadline - time[-min])). Default is no deadline. Valid time formats are:

And then I interrupted...

-c, --cpus-per-task=<*ncpus*>

Well...that's an important flag

Advise the Slurm controller that er *cous* number of ... oh... we do this processors per task. Without this ky to allocate "incorrectly" one processor per task. throughout the For instance, consider an applic uiring 3 docs now too, processors. If our cluster is com don't we? odes and we simply ask for 12 processors, the co only 3 nodes. However, by using the --cpus-per-task=3 option of controller knows that each task requires 3 processors on the same node, and the controller will grant an allocation of a nodes, one for each of the 4 tasks.

WHAT? THIS ISN'T IN THE PATCH NOTES? 22.05, srun will not inherit the --cpus-per-task value sbatch. It must be requested again with the call to srun

PUS_PER_TASK environment variable if desired for

timel-rum()). Default is no deadline. Valid time formats are:

... that's heavily

changing behavior?!?!

And then I interrupted the...

And then I interrupted the meeting...

That meeting went over by 40 minutes*

NERSC decided to do under-the-hood magic to keep -c the same.

But, other systems *clearly* won't, so I gotta do it manually to make it portable:

Need to do -c and --cpu-bind here, or it will be ignored in Slurm 22.05+.
SRUN_FLAGS="--cpus-per-task=32 --cpu-bind=cores"
srun \${SRUN_FLAGS} ../run_me.sh \$PROPER_AFFINITY \$SLURM_JOB_NUM_NODES

(Which will obviously work flawlessly, because everyone reads notes in SLURM scripts.)

So, the "portable" Slurm script needs:

1) Specific SLURM flags to avoid bad binding.

only --gpus or –gpus-per-node

2) Hand tuned CPU-to-GPU affinity.

> CUDA_VISIBLE_DEVICES

3) Careful use of common Slurm flags.

-c *must* be on the srun line

- Specialized knowledge
- System specific expertise.
- Careful control of commonly used and manipulated flags.
- Code specific tuning.
- Machine specific tuning.
- NONE of these is guaranteed to throw an error or report any problem.

Office of

Science

And it has a huge impact on performance*:

So, if the code team's response speaks to you:

"I remember when running on super computers was easy."

Hi! You have a colleague in me!

