

The POP Centre of Excellence in HPC Fouzhan Hosseini, The Numerical Algorithms Group (NAG) Fouzhan.hosseini@nag.co.uk, Nov 2020

EU H2020 Centre of Excellence (CoE)

1 December 2018 – 30 November 2021

Grant Agreement No 824080

Performance Optimisation and Productivity A Centre of Excellence in HPC

@POP HPC

- Promotes best practices in parallel programming
 - Improving Parallel Software can add a lot of value: Reduced expenditure, faster results, novel solutions
 - The POP Methodology a systematic approach to performance optimization building a quantitative picture of application behavior
- Free services for all EU academic and industrial codes and users
 - Suggestions on improving code performance, described in a *Performance Assessment*
 - Practical help with code refactoring through a *Proof of Concept*

- A Team with
 - Excellence in performance tools and tuning
 - Excellence in programming models and practices
 - R & D background in real academic and industrial use cases

How do we measure the performance of our parallel programs?

- Traditional speed-up and efficiency plots?
- Profiling & tracing with performance tools?
 - Tracing is powerful, but potentially generates overwhelming amount of data

data collected by Extrae

Difficult to know where to start and what to look for

Main Problem: Lack of quantitative understanding of the actual behavior of a parallel application

A Solution: The POP Metrics

Simple but extremely powerful idea

- Devise a simple set of performance metrics using values easily obtained from the trace data
- Where low values indicate **specific** causes of poor parallel performance

These metrics then are used to understand

- What are the causes of poor performance
- What to look for in the trace data
- Besides, the metrics provide a common ground for discussing performance issues
 - Between developers, users and analysts

11/18/20

POP MPI Parallel Efficiency Metrics

For more details visit <u>https://pop-coe.eu</u>

POP Metrics Example

Number of cores	48	96	192	384	768
Global Efficiency	0.93	0.94	0.93	0.84	0.76
🤄 Parallel Efficiency	0.93	0.91	0.87	0.77	0.68
🕒 Load balance	0.99	0.98	0.98	0.97	0.95
🕒 Communication Efficiency	0.94	0.92	0.89	0.79	0.72
🕒 Serialisation	0.95	0.94	0.92	0.85	0.81
🕒 Transfer efficiency	0.99	0.99	0.97	0.94	0.89
🕓 Computational Scaling	1.00	1.03	1.07	1.09	1.12
lnstruction Scaling	1.00	0.99	0.97	0.95	0.92
🦌 IPC Scaling	1.00	1.05	1.10	1.18	1.27
Frequency Scaling	1.00	1.00	1.00	0.98	0.96

- We immediately see that **Serialisation** is the main factor that limits the scalability
- Efficiency values are between 0 to 1, and
 - metric values above 0.8 represent acceptable performance

Performance Optimisation and Productivity A Centre of Excellence in HPC

Contact: ⊕ https://www.pop-coe.eu ≥ pop@bsc.es 2 @POP_HPC ▶ youtube.com/POPHPC

Free training materials Regular Webinars Service request form

