
Macro-Engineering Scientific Software

Michael A. Heroux, Sandia National Laboratories
Director of Software Technology, US Exascale Computing Project

SC20 SWE-CSE BOF
November 17 – 18, 2020

2

ECP Software Technology (ST) is one of three focus areas

Application
Development (AD)

Software
Technology (ST)

Hardware
and Integration (HI)

Performant mission and science applications @ scale
Aggressive RD&D

Project
Mission apps &

integrated S/W stack
Deployment to DOE

HPC Facilities
Hardware tech

advances

Integrated delivery of ECP
products on targeted systems at

leading DOE HPC facilities

6 US HPC vendors focused on
exascale node and system

design; application integration
and software deployment to

facilities

Deliver expanded and vertically
integrated software stack to

achieve full potential of exascale
computing

70 unique software products
spanning programming models
and run times, math libraries,

data and visualization

Develop and enhance the
predictive capability of

applications critical to the DOE

24 applications including
national security, to energy, earth

systems, economic security,
materials, and data

ECP ST has six technical areas

Programming
Models & Runtimes
•Enhance and get
ready for exascale the
widely used MPI and
OpenMP
programming models
(hybrid programming
models, deep
memory copies)

•Development of
performance
portability tools (e.g.
Kokkos and Raja)

•Support alternate
models for potential
benefits and risk
mitigation: PGAS
(UPC++/GASNet)
,task-based models
(Legion, PaRSEC)

•Libraries for deep
memory hierarchy
and power
management

Development
Tools

• Continued,
multifaceted
capabilities in
portable, open-
source LLVM
compiler
ecosystem to
support expected
ECP
architectures,
including support
for F18

• Performance
analysis tools that
accommodate
new
architectures,
programming
models, e.g.,
PAPI, Tau

Math Libraries
•Linear algebra,
iterative linear
solvers, direct linear
solvers, integrators
and nonlinear
solvers,
optimization, FFTs,
etc

•Performance on new
node architectures;
extreme strong
scalability

•Advanced
algorithms for multi-
physics, multiscale
simulation and
outer-loop analysis

•Increasing quality,
interoperability,
complementarity of
math libraries

Data and
Visualization

• I/O via the HDF5
API

• Insightful,
memory-efficient
in-situ
visualization and
analysis – Data
reduction via
scientific data
compression

• Checkpoint
restart

Software
Ecosystem

•Develop features in
Spack necessary to
support all ST
products in E4S, and
the AD projects that
adopt it

•Development of
Spack stacks for
reproducible turnkey
deployment of large
collections of
software

•Optimization and
interoperability of
containers on HPC
systems

•Regular E4S
releases of the ST
software stack and
SDKs with regular
integration of new
ST products

NNSA ST
• Open source

NNSA Software
projects

• Projects that have
both mission role
and open science
role

• Major technical
areas: New
programming
abstractions,
math libraries,
data and viz
libraries

• Cover most ST
technology areas

• Subject to the
same planning,
reporting and
review processes

4

ST L4 Teams
- WBS
- Name
- PIs
- PCs - Project
Coordinators

WBS WBS Name CAM/PI PC
2.3 Software Technology Heroux, Mike, McInnes, Lois
2.3.1 Programming Models & Runtimes Thakur, Rajeev
2.3.1.01 PMR SDK Shende, Sameer Shende, Sameer
2.3.1.07 Exascale MPI (MPICH) Balaji, Pavan Guo, Yanfei
2.3.1.08 Legion McCormick, Pat McCormick, Pat
2.3.1.09 PaRSEC Bosilica, George Carr, Earl
2.3.1.14 Pagoda: UPC++/GASNet for Lightweight Communication and Global Address Space Support Hargrove, Paul Hargrove, Paul
2.3.1.16 SICM Lang, Michael Vigil, Brittney
2.3.1.17 OMPI-X Bernholdt, David Grundhoffer, Alicia
2.3.1.18 RAJA/Kokkos Trott, Christian Robert Trujillo, Gabrielle
2.3.1.19 Argo: Low-level resource management for the OS and runtime Beckman, Pete Gupta, Rinku
2.3.2 Development Tools Vetter, Jeff
2.3.2.01 Development Tools Software Development Kit Miller, Barton Tim Haines
2.3.2.06 Exa-PAPI++: The Exascale Performance Application Programming Interface with Modern C++Dongarra, Jack Jagode, Heike
2.3.2.08 Extending HPCToolkit to Measure and Analyze Code Performance on Exascale Platforms Mellor-Crummey, John Meng, Xiaozhu
2.3.2.10 PROTEAS-TUNE Vetter, Jeff Glassbrook, Dick
2.3.2.11 SOLLVE: Scaling OpenMP with LLVm for Exascale Chapman, Barbara Kale, Vivek
2.3.2.12 FLANG McCormick, Pat Perry-Holby, Alexis
2.3.3 Mathematical Libraries Li, Sherry
2.3.3.01 Extreme-scale Scientific xSDK for ECP Yang, Ulrike Yang, Ulrike
2.3.3.06 Preparing PETSc/TAO for Exascale Munson, Todd Munson, Todd
2.3.3.07 STRUMPACK/SuperLU/FFTX: sparse direct solvers, preconditioners, and FFT libraries Li, Sherry Li, Sherry
2.3.3.12 Enabling Time Integrators for Exascale Through SUNDIALS/ Hypre Woodward, Carol Woodward, Carol
2.3.3.13 CLOVER: Computational Libraries Optimized Via Exascale Research Dongarra, Jack Carr, Earl
2.3.3.14 ALExa: Accelerated Libraries for Exascale/ForTrilinos Turner, John Grundhoffer, Alicia
2.3.4 Data and Visualization Ahrens, James
2.3.4.01 Data and Visualization Software Development Kit Atkins, Chuck Bagha, Neelam
2.3.4.09 ADIOS Framework for Scientific Data on Exascale Systems Klasky, Scott Grundhoffer, Alicia
2.3.4.10 DataLib: Data Libraries and Services Enabling Exascale Science Ross, Rob Ross, Rob
2.3.4.13 ECP/VTK-m Moreland, Kenneth Moreland, Kenneth
2.3.4.14 VeloC: Very Low Overhead Transparent Multilevel Checkpoint/Restart/Sz Cappello, Franck Ehling, Scott
2.3.4.15 ExaIO - Delivering Efficient Parallel I/O on Exascale Computing Systems with HDF5 and Unify Byna, Suren Bagha, Neelam
2.3.4.16 ALPINE: Algorithms and Infrastructure for In Situ Visualization and Analysis/ZFP Ahrens, James Turton, Terry
2.3.5 Software Ecosystem and Delivery Munson, Todd
2.3.5.01 Software Ecosystem and Delivery Software Development Kit Willenbring, James M Willenbring, James M
2.3.5.09 SW Packaging Technologies Gamblin, Todd Gamblin, Todd
2.3.5.10 ExaWorks Laney, Dan Laney, Dan
2.3.6 NNSA ST Mohror, Kathryn
2.3.6.01 LANL ATDM Mike Lang Vandenbusch, Tanya Marie
2.3.6.02 LLNL ATDM Becky Springmeyer Gamblin, Todd
2.3.6.03 SNL ATDM Jim Stewart Trujillo, Gabrielle

ECP ST Stats
- 34 L4 subprojects
- 11 PI/PC same
- 23 PI/PC different
- ~27% ECP budget

•~250 staff

• ~70 products

• 34 teams

• ~30 universities

• ~9 DOE labs

• 6 technical areas

• 1 focus area of 3 in ECP

5

Extreme-scale Scientific Software Stack (E4S)

• E4S: HPC Linux Ecosystem – a Software Portfolio
• A Spack-based distribution of software tested for

interoperability and portability to multiple architectures
• Available from source, containers, binary caches
• Leverages and enhances SDK interoperability thrust
• Not a commercial product – an open resource for all

• Oct 2018: E4S 0.1 - 24 full, 24 partial release products
• Jan 2019: E4S 0.2 - 37 full, 10 partial release products
• Nov 2019: E4S 1.0 - 50 full, 5 partial release products
• Nov 2020: E4S 2.0 - Look for SC20 announcement

e4s.io
Lead: Sameer Shende

(U Oregon)

We work on products applications need now and into the future

Example Products Engagement

MPI – Backbone of HPC apps Explore/develop MPICH and OpenMPI new features & standards.

OpenMP/OpenACC –On-node parallelism Explore/develop new features and standards.

Performance Portability Libraries Lightweight APIs for compile-time polymorphisms.

LLVM/Vendor compilers Injecting HPC features, testing/feedback to vendors.

Perf Tools - PAPI, TAU, HPCToolkit Explore/develop new features.

Math Libraries: BLAS, sparse solvers, etc. Scalable algorithms and software, critical enabling technologies.

IO: HDF5, MPI-IO, ADIOS Standard and next-gen IO, leveraging non-volatile storage.

Viz/Data Analysis ParaView-related product development, node concurrency.

Key themes:
• Exploration/development of new algorithms/software for emerging HPC capabilities:
• High-concurrency node architectures and advanced memory & storage technologies.
• Enabling access and use via standard APIs.
Software categories:
• The next generation of well-known and widely used HPC products (e.g., MPICH, OpenMPI, PETSc)
• Some lesser used but known products that address key new requirements (e.g., Kokkos, RAJA, Spack)
• New products that enable exploration of emerging HPC requirements (e.g., SICM, zfp, UnifyCR)

7

Key quality metric for ECP ST: Capability integration (KPP-3)

• Capability: Any significant product functionality, including existing features adapted to the pre-
exascale and exascale environments, that can be integrated into a client environment

• Capability Integration: Complete, sustainable integration of a significant product capability into a
client environment in a pre-exascale environment (tentative score) and in an exascale environment
(confirmed score)

• Success: Achieve 4 – 8 sustainable integrations of capabilities in exascale environments
– Not an arms race: Success comes from achieving modest integration
– Integration signals value in the ecosystem: Focus on collaboration once a part of the ecosystem

Key Performance Parameter (KPP) – Used to manage large projects

8

E4S DocPortal
provide single
access point
to independent
product docs

• Summary Info
– Name
– Functional Area
– Description
– License

• Searchable

• Sortable

https://e4s-project.github.io/DocPortal.html

All we need from the software team is
a repo URL + up-to-date meta-data files

https://e4s-project.github.io/DocPortal.html

9

E4S Community Policies V 1.0 – A community commitment to improving quality
• Spack-based Build and Installation

Each E4S member package supports a scriptable Spack build and production-quality installation in a way that is compatible with other E4S member packages in the same environment. When E4S build, test, or installation issues arise, there is
an expectation that teams will collaboratively resolve those issues.

• Minimal Validation Testing
Each E4S member package has at least one test that is executable through the E4S validation test suite (https://github.com/E4S-Project/testsuite). This will be a post-installation test that validates the usability of the package. The E4S validation
test suite provides basic confidence that a user can compile, install and run every E4S member package. The E4S team can actively participate in the addition of new packages to the suite upon request.

• Documentation
Each E4S member package should have sufficient documentation to support installation and use.

• Sustainability
All E4S compatibility changes will be sustainable in that the changes go into the regular development and release versions of the package and should not be in a private release/branch that is provided only for E4S releases.

• Product Metadata
Each E4S member package team will provide key product information via metadata that is organized in the E4S DocPortal format. Depending on the filenames where the metadata is located, this may require minimal setup.

• Public Repository
Each E4S member package will have a public repository, for example at GitHub or Bitbucket, where the development version of the package is available and pull requests can be submitted.

• Imported Software
If an E4S member package imports software that is externally developed and maintained, then it must allow installing, building, and linking against a functionally equivalent outside copy of that software. Acceptable ways to accomplish this
include (1) forsaking the internal copied version and using an externally-provided implementation or (2) changing the file names and namespaces of all global symbols to allow the internal copy and the external copy to coexist in the same
downstream libraries and programs.

• Error Handling
Each E4S member package will adopt and document a consistent system for signifying error conditions as appropriate for the language and application. For e.g., returning an error condition or throwing an exception. In the case of a command
line tool, it should return a sensible exit status on success/failure, so the package can be safely run from within a script.

• Test Suite
Each E4S member package will provide a test suite that does not require special system privileges or the purchase of commercial software. This test suite should grow in its comprehensiveness over time. That is, new and modified features
should be included in the suite.

https://github.com/E4S-Project/testsuite
https://e4s-project.github.io/DocPortal.html
https://github.com/E4S-Project/E4S-Documenter/blob/master/README.md

10

ECP ST Planning Process: Hierarchical, three-phase, cyclical

FY20–23 Baseline Plan
High level Definitions

• Q2 FY19 start
• FY20 Base plan
• FY21–23 planning

packages

Baseline

FY Refine Baseline Plan
As Needed

Basic activity definitions

• 6 months prior to FY
• 4–6 P6 Activities/year
• Each activity:

• % annual budget
• Baseline start/end
• High level description

Annual Refinement

Detailed Plan
Complete activity definitions

• 8 weeks prior to start
• High-fidelity description
• Execution strategy
• Completion criteria
• Personnel details

Per Activity

Two-level
Change Control

Changes to Cost, Scope,
and Schedule

Minor Major

Lightweight
Review in

Jira, L3 and
L2 leads

Change
Control
Board

Review, ECP
leadership

Variance Recorded in Jira
Proceed with Execution

The linked image cannot be displayed. The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

11

IDEAS-ECP team works with the ECP community to improve
developer productivity and software sustainability as key aspects of
increasing overall scientific productivity. https://ideas-productivity.org

Customize and curate
methodologies
● Target scientific software

productivity and sustainability
● Use workflow for best practices

content development

Incrementally and iteratively
improve software practices
● Determine high-priority topics for

improvement and track progress
● Productivity and Sustainability

Improvement Planning (PSIP)

Establish software communities
● Determine community policies to improve

software quality and compatibility
● Create Software Development Kits (SDKs)

to facilitate the combined use of
complementary libraries and tools

Engage in community outreach
● Broad community partnerships
● Collaboration with computing facilities
● Webinars, tutorials, events
● WhatIs and HowTo docs
● Better Scientific Software site (https://bssw.io)

1

2

3

4

https://bssw.io/

Pantheon and E4S support end-to-end ECP examples

LA-UR-20-27327 10/9/2020Los Alamos National Laboratory 12

Overview: The Exascale Computing Project (ECP) is a complex undertaking,
involving a myriad of technologies working together. An outstanding need is a
way to capture, curate, communicate and validate workflows that cross all of
these boundaries.

The Pantheon and E4S projects are collaborating to advance the integration and
testing of capabilities, and to promote understanding of the complex workflows
required by the ECP project. Utilizing a host of ECP technologies (spack, Ascent,
Cinema, among others), this collaboration brings curated workflows to the
fingertips of ECP researchers.

Contributions
- Curated end-to-end application/in-situ analysis examples can be run quickly by

anyone on Summit. (https://github.com/pantheonscience/ECP-E4S-Examples)

- Pantheon/E4S integration speeds up build/setup times over source builds due
to cached binaries (approx.10x speed up).

Instructions page for (top) Nyx, Ascent and
Cinema workflow repository, and (bottom)
Cloverleaf3d, Ascent, Cinema workflow.
These curated workflows use Pantheon,
E4S and spack to provide curated
workflows for ECP.

Special Thanks
to David Rogers,

Jim Ahrens,
Sameer Shende

https://github.com/pantheonscience/ECP-E4S-Examples

13

Final thoughts
• Curated, turn-key software ecosystems represent important advancement for scientific software

– Example: Jupyter notebooks & Python ecosystem
– Goal: E4S becomes one of these ecosystems for HPC (including AI/ML)

• Macro-engineering of advanced HPC capabilities made possible by
– low-overhead, high value software architectures

• E4S, SDKs, DocPortal, community policies
– Quality metrics

• Capability integration
– Tailored agile processes

• Long-term coarse grain refined to near-term fine grain
– Use of scalable distributed tools and workflows

• Modern platforms (Jira, Confluence, GitHub, Zoom, etc) essential
– Research software science

• Using tools of cognitive and social sciences to improve how we develop and use software for science

• Collaborate with us!

	Macro-Engineering Scientific Software
	ECP Software Technology (ST) is one of three focus areas
	ECP ST has six technical areas
	ST L4 Teams��- WBS�- Name�- PIs�- PCs - Project � Coordinators
	Extreme-scale Scientific Software Stack (E4S)�
	We work on products applications need now and into the future
	Key quality metric for ECP ST: Capability integration (KPP-3)
	E4S DocPortal�provide single�access point�to independent�product docs�
	E4S Community Policies V 1.0 – A community commitment to improving quality
	ECP ST Planning Process: Hierarchical, three-phase, cyclical
	IDEAS-ECP team works with the ECP community to improve developer productivity and software sustainability as key aspects of increasing overall scientific productivity. �
	Pantheon and E4S support end-to-end ECP examples
	Final thoughts

