
Building Portable Software: Finding a
Middle Ground

William Gropp
wgropp.cs.illinois.edu

What Do I Mean By a “Middle Ground”?
• There are well-established software engineering practices that have been

developed over the years for “scientific software”, e.g., including:
• Library API design
• Coding standards
• Testing standards and

coverage analysis
• Documentation and training
• Build systems
• Delivery

• But very much aimed at “batch” oriented process of building applications
• There is an entire community that is building apps and tools using different

methods and technologies
• Can we take advantage of the best of both worlds?

20th Century Approach
• Define a library API

• Either by algorithm (early libraries) or function (PETSc, later frameworks)
• Careful adherence to language standards, use languages designed to

provide performance (Fortran, C, C++)
• Build system

• Imake, autoconf, cmake, …
• If you think language wars are bad, try build systems

• User installs, uses binaries
• Lucky user has admins install library (correctly if user is really lucky)

• Very successful and still the core of many applications
• Same code likely to still run 10, 20, or even 30 years later

• But many challenges
• Best for expert users

21st Century Approach
• (I won’t do this justice)
• Define a rich framework that extends some existing system (which

is already itself rich)
• Exploit flexible implementation strategies, including

• Interpreted or JIT compilation; advanced analysis and compilation
• Leverage other frameworks (“stand on the shoulders of giants”)
• Use package installers or containers or similar technology to simplify

installation and use
• Maintain an escape to call those old-fashioned libraries

• Exploit rapid evolution in languages and tools
• But some things may not run next week. This is a feature

Portability in Time vs. Greatest Capability

Its not enough to have a great idea and
implementation
• Powerful tools with zillion capabilities but

poor or incomplete documentation can add
as many problems as they solve. Well-
meaning tutorials aren’t enough

• A downside of a rich environment
• What parameters/methods/interactions are

available/relevant?
• How do I make “this” change?
• Should I even make this change (am I trying to

impose the wrong model on the tool)?

Two Communities (?)
• Old hands (me)

• Numerical libraries
• Decades of backward compatibility
• (Mostly) Batch, command-line tools

• New blood (many of you)
• All manner of tools
• Rapid change, follow innovations in other tools, systems
• Interactive (at least as an option)
• Graphical (or other productivity-oriented) interface

Can We Take the Best from Both Communities?
• Use new approaches to deliver software to a broader user

community
• Leverage lessons on writing portable, persistent, high performance

software
• More effective ways to compose and integrate tools into application

workflows
• Documentation, training, and design

• Tension between completeness and ease of use
• Best ways to get feedback from user community

• You often get only one chance with new users

Two Criteria for Collaboration
• Bill’s rules:

1. Desperation. We’re all excited about new things that we can do.
But we can only find time for the ones that we’re desperate to
complete.

2. Commitment to Outreach. Build it and they will come rarely
works (just often enough to mislead). Particularly in HPC, strong
outreach efforts are necessary, including

• Documentation
• Examples
• Accepting and responding to bug reports
• Meeting with users on their own turf and showing them your solution

	Building Portable Software: Finding a Middle Ground
	What Do I Mean By a “Middle Ground”?
	20th Century Approach
	21st Century Approach
	Portability in Time vs. Greatest Capability
	Its not enough to have a great idea and implementation
	Two Communities (?)
	Can We Take the Best from Both Communities?
	Two Criteria for Collaboration

