Introduction to the IDEAS
Software Productivity Project

Mike Heroux (SNL), Lois Curfman Mclnnes (ANL), J. David Moulton
(LANL), David Bernholdt (ORNL), Hans Johansen (LBNL)

And all IDEAS project members

November 2015

~ ,
rrrrrrr 1 (| ® Lawrence Livermore A OAK o !
ﬂ’ LL% National Laboratory * LOSAlamos RIDGE Pacific Northwest National

BERKELEY LAB

— EST.1943 ————

ZER, U-S- DEPARTMENT OF Office of

7 EN ERGY Science

),
Laboratories \corew:

Confluence of trends

Fundamental trends:

Disruptive HW changes: Requires thorough algorithm/code
refactoring

Demands for coupling: Multiphysics, multiscale
Challenges:

Need refactorings: Really, continuous change

Modest app development funding: No monolithic apps

Requirements are unfolding, evolving, not fully known a priori
Opportunities:

Better design and SW practices & tools are available

Better SW architectures: Toolkits, libraries, frameworks

Basic strategy: Focus on productivity

IDEAS

productivity

I D E S Interoperable Design of Exireme-scale
productivity Application Software (IDEAS)

Enable increased scientific productivity, realizing the potential of extreme-

) s g Terrestrial ecosystem use cases tie IDEAS to modeling and
scale computing, through a new interdisciplinary and agile approach to the

simulation goals in two Science Focus Area (SFA) programs and

scientific software ecosystem. both Next Generation Ecosystem Experiment (NGEE) programs

Software Productivity

for Extreme-Scale Science in DOE Biologic and Environmental Research (BER).

DOE Workshop Report

Address confluence of trends in hardware and
increasing demands for predictive multiscale,
multiphysics simulations.

Respond to trend of continuous refactoring with
efficient agile software engineering
methodologies and improved software design.

Use Cases:
Terrestrial
Modeling

ASCR/BER partnership ensures delivery of both crosscutting methodologies and
metrics with impact on real application and programs.
Interdisciplinary multi-lab team (ANL, LANL, LBNL, LLNL, ORNL, PNNL, SNL)
ASCR Co-Leads: Mike Heroux (SNL) and Lois Curfman Mclnnes (ANL)
BER Lead: David Moulton (LANL)
Topic Leads: David Bernholdt (ORNL) and Hans Johansen (LBNL)

Integration and synergistic advances in three communities deliver scientific productivity;

Software
Productivity for

Science

for Software
Productivity

\/" outreach establishes a new holistic perspective for the broader scientific community.
u.s. DEPARTME&OF
2 o @ ENERGY
*each ang Com™"

Office of Science

Extreme-scale Science Applications

Domain component interfaces
 Data mediator interactions.

* Hierarchical organization.

* Multiscale/multiphysics coupling.

e Meshes.

 Matrices, vectors.

Library interfaces
* Parameter lists.
* Interface adapters.

-
|

|

|

|

|

|

|

|

|

|

|

|

|

I

! Shared data objects
|

|

|

|

|

|

|

|

|

|

:

| * Function calls.
|
|
|
|
|
|

Native code & data objects
* Single use code.

* Coordinated component use.

* Application specific.

Documentation content
* Source markup.
* Embedded examples.

Testing content
* Unit tests.
* Test fixtures.

Build content
* Rules.
* Parameters.

|

Extreme-Scale

Scientific
Software
Ecosystem

I 2 v v v v

'l Domain components | Libraries Frameworks & tools SW engineering

I« Reacting flow, etc. * Solvers, etc. * Doc generators. * Productivity tools.
| * Reusable. * Interoperable. <+ Test, build framework. ¢ Models, processes.
1 I A

i _I Extreme-Scale Scientific Software Development Kit (xSDK) I 1

IDEAS ‘What is’ and ‘How to’ docs

Motivation: Scientific software teams have a
wide range of levels of maturity in software
engineering practices

Baseline survey of xSDK and BER Use Case teams

Approach:

‘What Is’ docs: 2-page characterizations of
important software project topics

‘How To’ docs: brief sketch of best practices

®m Emphasis on *bite-sized" topics enables CSE software

teams to consider improvements at a small but impactful
scale

Initial emphasis:
What is CSE Software Productivity@
What are Software Testing Practices?

How to Add and Improve Testing in Your CSE Software
Project

Topics in progress:
Refactoring tools and approaches
Best practices for using interoperable libraries
Designing for performance portability
Etc.

What Are Software Testing Practices? |DEAS

The IDEAS Scientific Software Productty Project
www ideas-Droductivity org

productivity

Motivation: Software requires reguiar extensive tes

© to maintain portability to a wide variety of (ex
o 1o allow refactoring of the addiion of new fed

unknowingly introduce new erors, or reintrod)
® 10 produce cormect results for users.

In this document. we introduce some terminology of
and general approaches 10 testing

Types and granularities of testing: Software engs
testing (see Definition and Categorization of Tests &

o Verification testing Tests that very that thel
 No-change (often, perhaps mistakenly, cal
code produces the same results (1o an approg
Having comprehensive no-change und tests

code (refactoring) but quickly verity that the rgt

In addition, three granularities of testing are recogniz)

* Unit tests: Focus on testing indvidual softwal
individual classes.
Integration tests: Focus on testing the intery
the full system level

Systom-lovel tests: Focus on testing the

.

lovel. For example, a system-level test of a Cff

nput files, running the full simulation code, a
solutions

Managing and reporting on testing: The simplest j

fUNS ONE Of MOre executables, saving the output int
examine. Once a package becomes 100 complex,
satsfactory and requires vanous enhancements. Auf
called test harnesses) & Juced 1o lower the

8dding new tests. For example, fiters can be autom

indicates problems (e.g , here and here), and to displi

color) which build instantations generated erors (e
requires developers to check a website on a regular

How to Add and Improve Testing IDEAS
in Your CSE Software Project proguctelty

The IDEAS Scentific Software Productivity Project
W 235 DOAUCIVIY. 00

Overview: Adsng tests of sufficient coverage and quality improves confidence in software
WG makes € eaner 10 Change and extend Tests should be adced to exsting code before the
code s changed. Tests shoukd be added 1o new code before (or while) & is being writien.
These tests Tan become the founcation of 8 regression test suite that heips effectively drve
future development and improves long-term sustainabilty

Target Audience: CSE software projoct leaders and developers who are facing significant

refactonng efiorts because of hardware archiecture changes o increased demands for

muliphysics and mullscale couping, and who want 1o ncrease the quality and speed of
tan and costs.

Purpose: Show how to add quality festing to a project in order to support efficient

modiication of existing code or additon of new code. Show how 10 3dd 10sts 10 support (1)
adding a new feature. (2) fixing a bug. (3) improving the design and implementation. or
4) optimizing resource usage
Prerequisites: First read the document /b
#wough Defintien and Categonzaton of Te:

1. Setup automated builds of the code with Ngh warning levels and eliminate all
st
2 Select test haress frameworks
3 Select a system-level test harness for system-executable tests that report
resuits appropriately (e.g., CTestCOash, Jenkins)
5. Select a unit test hamess 10 efloctively define and run finer-gramed
ntegration and uni tests (e.9.. Google Test, pFUNK).
¢ Customize or streamiine system-level andior unil test frameworks for use in
your parscular project
3 Add system-level tests o profect mayor user functionaly
a Select inputs for several important problem chasses and run code 1o produce

With & system.iave! test harness in crder

 pin down mpo
4 Add integration and unit tests (as
.

® Find test points who

@ Cover targeted code 1o be changed with suffcient (characterizaton)
tests
Y et . Bt o o Suppertind By T U 5. Depariment of Enevgy Ofice of Science, Advanced Sciermhe
g Rsaar s Bk are) Ewwonmental Reseasch (roframs

ORAFT Vierwon 6.1, Apel 27, 2018

Impact: Provide baseline nomenclature and
foundation for next steps in SW productivity
and SW engineering for CSE teams.
IDEAS

productivity

xSDK: Working toward the development of a highly
effective extreme-scale scientific sofftware ecosystem

Focus: Increasing the functionality, quality, and interoperability of
important scientific libraries and development tools

Multiphysics Application C

RN

Application A Application B

xSDK package compliance standards G Gree>
xSDK standard configure and CMake options @W)@
RE>

Library interoperability

xSDK foundations: Seeking community feedback:

Standard xSDK package installation interface

Designing for performqnce porta b|||1'y facilitates combined use of xSDK libraries (initially
hypre, PETSc, SuperlLU, Trilinos), as needed by BER

use cases and other multiphysics apps.

: | \"Z | v]
: Domain components | Libraries Frameworks & tools SW engineering :
I Reacting flow, etc. * Solvers, etc. * Doc generators. * Productivity tools.
: Reusable. * Interoperable. <+ Test, build framework. ¢ Models, processes. :
1 I
L A
I /
1 _l Extreme-Scale Scientific Software Development Kit (xSDK) T :
IDEAS

productivity

Better software productivity is essential

for extreme-scale CSE

-1 Better SW productivity can give us better, faster and cheaper

Better: Science, portability, robustness, composability Essential mechanism for progress

= |n time of disruptive change

® |n presence of multiple
design tradeoffs

Faster: Execution, development, dissemination

Cheaper: Fewer staff hours and lines of code

-1 IDEAS project
Enabling production of high-quality Science

Scientific

Questions Discovery
science results, rapidly and efficiently Vs
® Multiscale terrestrial ecosystem science %éb
m Broadly: DOE extreme-scale scientific apps B
Delivering first-of-a-kind extreme- §
scale scientific software ecosystem S
m xSDK @“’g

m SWP methodologies (“HowTo”)

m OQutreach and community

